# The Ionization of Feeble Organic Acids in DMSO-Water Mixtures. Acidity Constants Derived by Extrapolation to the Aqueous State 

Robin A. Cox and Ross Stewart*<br>Contribution from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5. Received April 9, 1975


#### Abstract

Using ionization ratio measurements in DMSO-water mixtures containing small fixed amounts of base, the acidity constants of a large number of weak organic acids have been calculated using two extrapolative procedures, both of which involve the use of activity coefficient ratios $\left(\log \left(f_{\mathrm{A}} / / f_{\mathrm{AH}} f_{\mathrm{OH}}-\right)\right)$. The first is based on the Bunnett-Olsen method, developed for acid solutions, and uses a single acidity function; the other is a modified version of the Marziano-Cimino-Passerini method, which was also first used for strong acids. The latter method uses overlapping indicators but does not involve an acidity function. For those compounds whose ionization is closely governed by an acidity function the resulting $\mathrm{p} K_{\mathrm{a}}$ 's (standard state water) are substantially unchanged from values obtained using the acidity function method. Appreciable differences result for other compounds, however. The different $H_{-}$functions available in this medium are examined and discussed in terms of the concept of "excess basicity", the increase in basicity relative to the standard state due to the various species' activity coefficients deviating from unity. Some comments regarding the value of the acidity function concept are also made.


Hitherto inaccessible regions of organic chemistry were opened up for study by Hammett's introduction of the acidity function concept. ${ }^{1}$ This technique consists of stepwise and complementary measurements of solution acidity, $H_{0}$, and solute basicity, $\mathrm{p} K_{\mathrm{BH}^{+}}$, using eq 1 and starting with

$$
\begin{gather*}
H_{0}=\mathrm{p} K_{\mathrm{BH}^{+}}+\log C_{\mathrm{B}} / C_{\mathrm{BH}^{+}}  \tag{1}\\
H_{0}=-\log a_{\mathrm{H}^{+}} f_{\mathrm{B}} / f_{\mathrm{BH}^{+}} \tag{2}
\end{gather*}
$$

known quantities firmly anchored in water as the standard state. The measurements are then extended to more and more feeble solute bases and more and more powerfully acidic solutions. ${ }^{2}$ (Throughout this work $C$ represents concentration, $a$ activity (water as standard state), and $f$ activity coefficient, all in molarity units.)

The hope that a single acidity function would suffice for different kinds of organic bases, amines, ketones, amides, etc., faded as their ionization behavior was more closely scrutinized. ${ }^{3}$ So-called "acidity function failure" ${ }^{4}$ is the failure of the activity coefficient ratio in eq 2 to be independent of the structure of the base. Unfortunately, using this term may suggest that the acidity function concept has failed. It has done so only to the extent that a single function cannot describe the protonating power of concentrated acid solution toward all bases. It does not invalidate $\mathrm{p} K_{\mathrm{BH}^{+}}$ values obtained for a series of compounds whose ionization behavior is sufficiently alike that the activity coefficient ratio is a function only of the medium. ${ }^{5}$ By careful checks on the constancy of the term $\Delta \log I\left(\log C_{\mathrm{B}} / C_{\mathrm{BH}^{+}}-\log \right.$ $C_{B^{\prime}} / C_{B^{\prime} \mathrm{H}^{+}}$) for the two overlapping indicators B and $\mathrm{B}^{\prime}$ (the essence of the method) reliable values can often be obtained for the $\mathrm{p} K_{\mathrm{BH}}+$ of feeble organic bases. How else, for example, can information be obtained that allows meaningful estimates to be made of the extent of protonation of, say, a ketone or an aldehyde in water at $\mathrm{pH} 7{ }^{7}$

The existence of a multitude of acidity functions for a given acid system does not, in itself, detract from the reliability of the $\mathrm{p} K$ values that are obtained, provided a series of compounds with near-perfect overlap between adjacent indicator bases has been used. Of course, perfect overlap in the accessible region of measurement does not guarantee that standard state $\mathrm{p} K$ values are obtained. It is conceivable that compounds whose ionization ratio plots are perfectly parallel in solutions in which both are measurably ionized diverge in less acidic media. Though such divergence, if
substantial, would lead to significant errors in $\mathrm{p} K^{3 a}$ there is no reason to suppose that this is a serious source of error when structurally related compounds are used. ${ }^{5}$

An analogous situation exists in measuring the acidity of feeble acids in powerfully basic media. Most work in this region has been done using a fixed concentration of hydroxide ion and variable amounts of a polar aprotic solvent such as dimethyl sulfoxide (DMSO), ${ }^{7-11}$ starting again with pure water as the standard state. Certain aromatic amines have been used to construct an $H_{-}$scale that ranges from 12.04 ( $0.011 \mathrm{M} \mathrm{HO}^{-}$in water) to over $26\left(0.011 \mathrm{M} \mathrm{HO}^{-}\right.$ in $99.6 \mathrm{~mol} \%$ DMSO, $0.4 \mathrm{~mol} \%$ water). ${ }^{7 \mathrm{~b}}$ The high basicity toward aromatic amines of solutions rich in DMSO is related to the high degree of charge delocalization within the amide anion and it is not surprising that oxygen acids (carboxylic acids and phenols) whose anions have a much smaller degree of charge delocalization do not obey the $H_{-}$function constructed using aromatic amines. ${ }^{7 a, 10}$ Indeed, not all aromatic amines give ionization plots that are parallel to those of their neighbors and estimates of the $\mathrm{p} K$ values of such compounds are more difficult to make. ${ }^{7 \mathrm{~b}, 12}$

In a recent critique of acidity functions, Kreevoy and Baughman ${ }^{13}$ state that "the Hammett acidity function concept requires that $\mathrm{p} K_{\mathrm{HA}}$ for all the acids correlated, in any one of the solvent mixtures involved, be a linear function of $\mathrm{p} K_{\mathrm{HA}_{0}}$, the corresponding quantity in a reference solvent (usually water) with unit slope". Strictly speaking, this restriction applies only to those solutions less basic than that in which the anchor compound is $90 \%$ ionized (using the usual criteria for making indicator measurements). Perfectly valid standard state $\mathrm{p} K$ values may be obtained even if gross deviations from linearity appear in solutions in which some or all of the compounds are highly ionized. ${ }^{14}$ (Hallé and Schaal et al. ${ }^{15}$ also have questioned the thermodynamic significance of the amine $\mathrm{p} K$ values derived during the construction of the $H_{-}$scale. Their results, based in part on electrochemical measurements, indicate an increasing spread of $\mathrm{p} K$ values for aromatic amines as the DMSO content increases.)

The following is a general statement of the law governing the behavior of a set of valid acidity function indicators, ${ }^{16}$ whether they be weak bases or weak acids: the derived $\mathrm{p} K$ values of an overlapping Hammett set will only be identical with the standard state $\mathrm{p} K$ values when $\Delta \log I$ for each pair of adjacent compounds is constant in all media that
range in composition from that of the standard state to that in which the more basic (acidic) of the pair is $90 \%$ ionized.

Recent work in pure DMSO, ${ }^{17}$ using both the glass electrode ${ }^{17 \mathrm{a}}$ and indicator ${ }^{17 \mathrm{~b}}$ approaches, provides $\mathrm{p} K$ values for which DMSO is the standard state. The advantage of referring all acidities and basicities to DMSO is that a very wide range of acidities can be measured in this medium, since its degree of autoprotolysis is so much less than that of water. ${ }^{19}$ The advantage of continuing to use water as the standard state, the Hammett approach, is the long familiarity that chemists have had with the system and the pK values determined therein. Furthermore, the shape of the $H_{-}$vs. solvent composition curve for aqueous DMSO shows that addition of DMSO to water containing base produces an almost linear change in the basicity of the medium toward aromatic amines from zero to about $85 \mathrm{~mol} \%$ DMSO. Beyond this point a rapid increase in basicity is noted and the curve approaches the ordinate representing pure DMSO almost asymptotically. In other words, small amounts of water in DMSO cause drastic, and probably nonlinear, changes in the basicity of the medium, owing doubtless to the need of acid anions for hydrogen-bondingtype solvation. Thus measurements in anhydrous DMSO need to be very carefully made in order to obtain absolute $\mathrm{p} K$ values in this medium.

In view of the doubts expressed about the value of the acidity function approach in determining $\mathrm{p} K_{\mathrm{HA}}$ values of feeble organic acids in water, we undertook an indirect study of the problem making use of two new methods of calculation based on those given for acid systems by Bunnett and Olsen ${ }^{19,20}$ and by Marziano, Cimino, and Passerini. ${ }^{21}$ The former makes use of an acidity function; the latter does not, although it makes use of the same experimental data. We have only recently been able to make use of these two approaches since the necessary data concerning water activity in aqueous DMSO at $25^{\circ}{ }^{22}$ was hitherto unavailable.

For an organic acid HA we can define $K_{\mathrm{HA}}$ :

$$
\begin{gathered}
\mathrm{HA} \stackrel{K_{\mathrm{HA}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{A}^{-} \\
K_{\mathrm{HA}}=a_{\mathrm{H}^{+}}+a_{\mathrm{A}^{-}} / a_{\mathrm{HA}}
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \stackrel{K_{\mathrm{w}}}{=} \mathrm{H}^{+}+\mathrm{HO}^{-} \\
& K_{\mathrm{w}}=a_{\mathrm{H}^{+}} a_{\mathrm{HO}} / a_{\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

In the basic solutions under consideration here, the reaction of interest is more appropriately represented as

$$
\begin{gathered}
\mathrm{HA}+\mathrm{HO}^{-} \stackrel{K_{\mathrm{b}}}{\rightleftharpoons} \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O} \\
K_{\mathrm{b}}=a_{\mathrm{A}}-a_{\mathrm{H}_{2} \mathrm{O}} / a_{\mathrm{HA} a_{\mathrm{HO}^{-}} \quad \text { and } \quad K_{\mathrm{HA}}=K_{\mathrm{b}} K_{\mathrm{w}}}
\end{gathered}
$$

Thus we can write

$$
K_{\mathrm{HA}}^{\prime} / K_{\mathrm{w}}=\left(C_{\mathrm{A}^{-}} / C_{\mathrm{HA}}\right)\left(a_{\mathrm{H}_{2} \mathrm{O}} / C_{\mathrm{HO}^{-}}\right)\left(f_{\mathrm{A}^{-}} / f_{\mathrm{HA}} f_{\mathrm{HO}^{-}}\right)
$$

Taking logarithms and rearranging gives eq 3 and 4.

$$
\begin{gather*}
\mathrm{p} K_{\mathrm{HA}+\log C_{\mathrm{A}^{-}} / C_{\mathrm{HA}}=\mathrm{p} K_{\mathrm{w}}+}^{\log C_{\mathrm{HO}^{-}}-\log a_{\mathrm{H}_{2} \mathrm{O}}-\log f_{\mathrm{A}^{-}} / f_{\mathrm{HA}} f_{\mathrm{HO}^{-}}} \\
\mathrm{p} K_{\mathrm{HA}^{-}}+\log C_{\mathrm{A}^{-}} / C_{\mathrm{HA}}=H_{-} \tag{3}
\end{gather*}
$$

Applying the Bunnett-Olsen treatment to basic solutions is equivalent to requiring that the term $\log \left(f_{\mathrm{A}_{2}-} / f_{\mathrm{HA}_{2}} f_{\mathrm{HO}^{-}}\right)$ for a specific acid $\mathrm{HA}_{z}$ be a linear function of the term log ( $f_{\mathrm{A}}-/ f_{\mathrm{HA}} f_{\mathrm{HO}}$ ) for a set of acids HA defining an acidity function. (This is less stringent than the Hammett requirement that such terms cancel out.) If the acid $\mathrm{HA}_{z}$ was used
in the construction of the scale and if the scale indicators all gave perfect overlap the functions would, of course, be linear and of unit slope; if the ionization of $\mathrm{HA}_{z}$ does not overlap perfectly with the scale indicators the deviation is represented by the term $\phi$ in eq 5 .

$$
-\log \left(f_{\mathrm{A}_{2}}-/ f_{\mathrm{HA}_{2}} f \mathrm{HO}^{-}\right)={ }_{(\phi+1)\left[-\log \left(f_{\mathrm{A}^{-}} / f_{\mathrm{HA}} f_{\mathrm{HO}^{-}}\right)\right]}
$$

From eq 3, 4, and 5,

$$
\begin{array}{r}
\mathrm{p} K_{\mathrm{HA}_{z}}+\log C_{\mathrm{A}_{z}-} / C_{\mathrm{HA}_{z}}-\mathrm{p} K_{\mathrm{w}}-\log C_{\mathrm{HO}^{-}}+\log a_{\mathrm{H}_{2} \mathrm{O}}= \\
(\phi+1)\left(H_{-}-\mathrm{p} K_{\mathrm{w}}-\log C_{\mathrm{OH}^{-}}+\log a_{\mathrm{H}_{2} \mathrm{O}}\right)
\end{array}
$$

or

$$
\begin{array}{r}
H_{-}-\log C_{\mathrm{A}_{-}} / C_{\mathrm{HA}_{z}}=-\phi\left(H_{-}-\mathrm{p} K_{\mathrm{w}}-\log C_{\mathrm{OH}^{-}}+\right. \\
\left.\log a_{\mathrm{H}_{2} \mathrm{O}}\right)+\mathrm{p} K_{\mathrm{HA}} \tag{6}
\end{array}
$$

Plots of $\left(H_{-}-\log C_{\mathrm{A}_{z}-} / C_{\mathrm{HA}_{z}}\right.$ ) against ( $H_{-}-\mathrm{p} K_{\mathrm{w}}-\log$ $\mathrm{COH}^{-}+\log a_{\mathrm{H}_{2} \mathrm{O}}$ ) give $-\phi$ as the slope and $\mathrm{p} K_{\mathrm{HA}}$ as the intercept.

The Marziano-Cimino-Passerini approach, like that of Bunnett and Olsen, depends on there being a linear relationship between values of $\log \left(f_{\mathrm{A}^{-}} / f_{\mathrm{HA}} \mathcal{f O H}^{-}\right)$for different acids. The subsequent treatment, however, makes use of a single reference compound, rather than an acidity function.

Rewriting eq 3 gives eq 7 :

$$
\begin{align*}
\mathrm{p} K_{\mathrm{w}}+\log C_{\mathrm{OH}^{-}}-\log a_{\mathrm{H}_{2} \mathrm{O}}-\log C_{\mathrm{A}^{-}} / C_{\mathrm{HA}} & = \\
& \log \left(f_{\mathrm{A}^{-}} / f_{\mathrm{HA}^{2}} \mathrm{fOH}^{-}\right)+\mathrm{p} K_{\mathrm{HA}^{2}} \tag{7}
\end{align*}
$$

For two acids $\mathrm{HA}_{0}$ (an anchor compound of known pK ) ${ }^{23}$ and $\mathrm{HA}_{1}$ with which it overlaps, we can write

$$
\begin{align*}
& \mathrm{p} K_{\mathrm{w}}+\log C_{\mathrm{OH}^{-}}-\log a_{\mathrm{H}_{2} \mathrm{O}^{-}} \log C_{\mathrm{A}_{1}-} / C_{\mathrm{HA}_{1}}= \\
& m\left[\log \left(f_{\mathrm{A}_{0}-} / f_{\mathrm{HA}_{0}} f \mathrm{OH}^{-}\right)\right]+\mathrm{p} K_{\mathrm{HA}_{4}}=m\left(\mathrm{p} K_{\mathrm{w}}+\log C_{\mathrm{OH}^{-}}-\right. \\
& \left.\log a_{\mathrm{H}_{2} \mathrm{O}}-\log C_{\mathrm{A}_{0}-} / C_{\mathrm{HA}_{0}}-\mathrm{p} K_{\mathrm{HA}_{0}}\right)+\mathrm{p} K_{\mathrm{HA}_{1}} \tag{8}
\end{align*}
$$

where $m=\log \left(f_{\mathrm{A}_{1}} / f_{\mathrm{HA}_{A^{\prime}}} f \mathrm{fOH}^{-}\right) / \log \left(f_{\mathrm{A}_{0}-} / f_{\mathrm{HA}_{0}} f_{\mathrm{OH}^{-}}\right)$.
Graphs plotted according to eq 8 should be (and almost invariably are) linear, giving the value of $\mathrm{p} K_{\mathrm{HA}}$ as the intercept and $m$ as the slope. The process is repeated for a set of overlapping and well-behaved indicators using $\mathrm{p} K_{\mathrm{HA}_{1}}$ and the other necessary data to calculate $\mathrm{p}_{\mathrm{HA}_{2}}$, and so on up the series. Once all the values of $m, \mathrm{p} K_{\mathrm{HA}}$, and $\log \left(f_{\mathrm{A}^{-}} /\right.$ $\left.f_{\mathrm{HA}} \mathrm{OH}^{-}\right)$are known for each member of the set it is convenient to calculate $\log \left(f_{\mathrm{A}^{-}}-/ f_{\mathrm{HA}_{4}} f \mathrm{fOH}^{-}\right)$for a reference indicator HA* in all solvent mixtures used:

$$
\begin{gather*}
\log \left(f_{\mathrm{A}^{*}-} / f_{\mathrm{HA}_{4}} f_{\mathrm{OH}^{-}}\right)=1 / m \log \left(f_{\mathrm{A}_{1}-} / f_{\mathrm{HA}, \mathrm{OH}^{-}}\right)= \\
1 / m m^{\prime} \log \left(f_{\mathrm{A}_{2}-} / f_{\mathrm{HA}_{2}} f_{\mathrm{OH}^{-}}\right)= \\
\ldots=1 / \pi m \log \left(f_{\mathrm{A}_{-}-} / f_{\mathrm{HA}_{4}} f_{\mathrm{OH}^{-}}\right)  \tag{9}\\
\mathrm{p} K_{\mathrm{w}}+\log C_{\mathrm{OH}^{-}}-\log a_{\mathrm{H}_{2} \mathrm{O}}-\log C_{\mathrm{A}_{2}} / C_{\mathrm{HA}_{2}}= \\
m^{*}\left[\log \left(f_{\mathrm{A}^{*}-} / f_{\mathrm{HA}_{\downarrow}} f \mathrm{OH}^{-}\right)\right]+\mathrm{p} K_{\mathrm{HA}_{z}} \tag{10}
\end{gather*}
$$

Equation 10 can then be used to estimate $\mathrm{p} K_{\mathrm{HA}}$ values for any acid HA, for which ionization data are available at any solvent composition.

This method does not involve the use of any acidity function, although it does make use of the indicator overlap principle to determine the quantity $\log \left(f_{\mathrm{A}^{*}}-/ f_{\mathrm{HA} *} f_{\mathrm{OH}^{-}}\right)$for the reference compound.

## Data and Calculations

Activity coefficients of water in water-DMSO mixtures at $25^{\circ}$ are given by Lam and Benoit; ${ }^{22}$ they agree well with the values calculated for $25^{\circ}$ by Cox and McTigue ${ }^{24}$ from existing $75^{\circ}$ data. ${ }^{25}$ So that all the concentration units used here may be referred to a common molarity scale, the water activity was also calculated on a molarity basis, using densi-

Table I. Water Activity, $H_{-}$, and Associated Data Used in Extrapolative $\mathrm{p} K_{\mathrm{HA}}$ Calculations in Water-DMSO Mixtures at $25^{\circ}$

| Mol \% DMSO | $H_{-}$ | $-\log a_{\mathrm{H}_{2}} \mathrm{O}^{a}$ | $\mathrm{p} K_{\mathrm{W}}+\log \mathrm{COH}^{-}-\log a_{\mathrm{H}_{2} \mathrm{O}}$ |  | $\begin{aligned} & H_{-}-\mathrm{p} K_{\mathrm{w}} \\ - & \log C_{\mathrm{OH}^{-}} \\ + & \log a_{\mathrm{H}_{2} \mathrm{O}} \end{aligned}$ | $\begin{aligned} & -\log \left(f_{\mathrm{A} *^{-}} /\right. \\ & \left.f_{\mathrm{HA} *} f_{\mathrm{OH}^{-}}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.011 M | 0.0471 M |  |  |
| 0 | $(12.04)^{b}$ | 0.000 | 12.04 | 12.67 | 0.00 | 0.00 |
| 2 | 12.21 | 0033 | 12.07 | 12.70 | 0.14 | 0.19 |
| 4 | 12.43 | 0.065 | 12.10 | 12.73 | 0.33 | 0.38 |
| 6 | 12.64 | 0.098 | 12.14 | 12.77 | 0.51 | 0.57 |
| 8 | 12.84 | 0.131 | 12.17 | 12.80 | 0.67 | 0.75 |
| 10 | 13.04 | 0.164 | 12.20 | 12.83 | 0.84 | 0.93 |
| 12 | 13.26 | 0.198 | 12.24 | 12.87 | 1.03 | 1.11 |
| 14 | 13.49 | 0.234 | 12.27 | 12.90 | 1.22 | 1.29 |
| 16 | 13.73 | 0.272 | 12.31 | 12.94 | 1.42 | 1.47 |
| 18 | 13.98 | 0.310 | 12.35 | 12.98 | 1.63 | 1.65 |
| 20 | 14.24 | 0.349 | 12.39 | 13.02 | 1.85 | 1.82 |
| 22 | 14.48 | 0.389 | 12.43 | 13.06 | 2.05 | 2.00 |
| 24 | 14.71 | 0.432 | 12.47 | 13.10 | 2.24 | 2.17 |
| 26 | 14.92 | 0.476 | 12.51 | 13.14 | 2.41 | 2.34 |
| 28 | 15.14 | 0.520 | 12.56 | 13.19 | 2.58 | 2.51 |
| 30 | 15.37 | 0.563 | 12.60 | 13.23 | 2.77 | 2.67 |
| 32 | 15.58 | 0.604 | 12.64 | 13.27 | 2.94 | 2.83 |
| 34 | 15.80 | 0.644 | 12.68 | 13.31 | 3.12 | 2.99 |
| 36 | 16.02 | 0.685 | 12.72 | 13.35 | 3.30 | 3.15 |
| 38 | 16.22 | 0.729 | 12.77 | 13.40 | 3.45 | 3.31 |
| 40 | 16.43 | 0.775 | 12.81 | 13.44 | 3.62 | 3.47 |
| 42 | 16.63 | 0.821 | 12.86 | 13.49 | 3.77 | 3.62 |
| 44 | 16.84 | 0.868 | 12.90 | 13.54 | 3.94 | 3.77 |
| 46 | 17.04 | 0.913 | 12.95 | 13.58 | 4.09 | 3.92 |
| 48 | 17.24 | 0.957 | 12.99 | 13.63 | 4.35 | 4.07 |
| 50 | 17.44 | 0.999 | 13.04 | 13.67 | 4.40 | 4.22 |
| 52 | 17.67 | 1.043 | 13.08 | 13.71 | 4.59 | 4.36 |
| 54 | 17.88 | 1.088 | 13.13 | 13.76 | 4.76 | 4.51 |
| 56 | 18.08 | 1.132 | 13.17 | 13.80 | 4.91 | 4.65 |
| 58 | 18.29 | 1.176 | 13.21 | 13.85 | 5.08 | 4.79 |
| 60 | 18.49 | 1.221 | 13.26 | 13.89 | 5.23 | 4.93 |
| 62 | 18.69 | 1.266 | 13.30 | 13.94 | 5.39 | 5.07 |
| 64 | 18.89 | 1.311 | 13.35 | 13.98 | 5.54 | 5.21 |
| 66 | 19.09 | 1.356 | 13.39 | 14.03 | 5.70 | 5.35 |
| 68 | 19.30 | 1.403 | 13.44 | 14.07 | 5.86 | 5.50 |
| 70 | 19.51 | 1.450 | 13.49 | 14.12 | 6.02 | 5.65 |
| 72 | 19.72 | 1.498 | 13.54 | 14.17 | 6.18 | 5.80 |
| 74 | 19.93 | 1.548 | 13.59 | 14.22 | 6.34 | 5.94 |
| 76 | 20.13 | 1.600 | 13.64 | 14.27 | 6.49 | 6.10 |
| 78 | 20.34 | 1.655 | 13.69 | 14.32 | 6.65 | 6.26 |
| 80 | 20.58 | 1.713 | 13.75 | 14.38 | 6.83 | 6.42 |
| 82 | 20.82 | 1.775 | 13.81 | 14.44 | 7.01 | 6.59 |
| 84 | 21.08 | 1.840 | 13.88 | 14.51 | 7.20 | 6.76 |
| 86 | 21.35 | 1.911 | 13.95 | 14.58 | 7.40 | 6.94 |
| 88 | 21.64 | 1.988 | 14.03 | 14.66 | 7.61 | 7.13 |
| 90 | 21.97 | 2.073 | 14.11 | 14.74 | 7.86 | 7.34 |
| 92 | 22.35 | 2.171 | 14.21 | 14.84 | 8.14 | 7.57 |
| 94 | 22.81 | 2.293 | 14.33 | 14.96 | 8.48 | 7.85 |
| 95 | 23.08 | 2.369 | 14.41 | 15.04 | 8.67 | 8.01 |
| 96 | 23.41 | 2.46 | 14.50 | 15.13 | 8.91 | 8.21 |
| 97 | 23.82 | 2.58 | 14.62 | 15.25 | 9.20 | 8.45 |
| 98 | 24.32 | 2.75 | 14.79 | 15.42 | 9.53 | 8.77 |
| 99 | 25.12 | 3.05 | 15.08 | 15.72 | 10.04 | 9.20 |
| 99.61 | 26.14 | 3.45 | 15.49 | 16.12 | 10.65 | 9.69 |

${ }^{a}$ See text. ${ }^{b} \mathrm{pH}$; see text.
ties of water-DMSO mixtures given by Cowie and Toporowski. ${ }^{26}$ In order that we may continue using the familiar value of 13.996 for $\mathrm{p} K_{\mathrm{w}}$ at $25^{\circ},{ }^{27}$ the resulting water activities were divided by the molarity of water in pure water, which is 55.347 M at $25^{\circ}$; this gives us a molarity-based water activity scale beginning at 1 in pure water. The resulting molarity-based values of $\log a_{\mathrm{H}_{2} \mathrm{O}}$ at $2 \mathrm{~mol} \%$ intervals in water-DMSO mixtures are given in Table I. Values of $f_{\mathrm{H}_{2} \mathrm{O}}$ are not available between 95 and $100 \mathrm{~mol} \%$ DMSO; ${ }^{22}$ so water activity data in this concentration range are interpolated. Thus the data and associated calculations between 95 and $100 \mathrm{~mol} \%$ DMSO are probably not wholly reliable.

The two fixed base concentrations habitually used in this
work are 0.011 and 0.0471 M ; combining the logs of these values with the value 13.996 for $\mathrm{p} K_{w}$ at $25^{\circ} 27$ leads to values ( $\mathrm{p} K_{\mathrm{w}}+\log \mathrm{COH}^{-}$) of 12.037 and 12.669 for these two base concentrations, respectively. This means that the pH of a 0.011 M solution of tetramethylammonium hydroxide in water should be 12.04 at $25^{\circ}$; this was checked by pH -meter measurement several times and found to be correct, provided that $\mathrm{CO}_{2}$-free water was used and the measurement temperature was correct, or correctly compensated for.

Bunnett-Olsen Method. At present there are six available acidity functions for DMSO-water mixtures. Both the $H_{-}$ and $H_{2}$ - scales of Stewart et al. ${ }^{7,10}$ for primary anilines and diphenylamines and diphenylaminecarboxylic or -sulfonic
acids and aminobenzoic acids, respectively, use 0.011 M tetramethylammonium hydroxide (TMAH). The $H_{-}$q scale of Katritzky et al. ${ }^{9}$ and the $H_{-}{ }^{\text {c }}$ carbon acid scale of Bowden, Cockerill, and Lamper ${ }^{8}$ use 0.0471 M TMAH. Two scales, $H_{\mathrm{GC}}{ }^{0.011}$ and $H_{\mathrm{GC}}{ }^{0.0471}$, have been determined by Janata and Holtby-Brown ${ }^{11}$ using the half-wave reduction potential of cobalticinium ion, relative to a glass electrode. All of these scales were investigated in this work, although for $\mathrm{p} K_{\mathrm{HA}}$ calculations via eq 6 the $H_{-}$scale was preferred. Values of $H_{-}$of ( $\mathrm{p} K_{\mathrm{w}}+\log \mathrm{COH}^{-}-\log a_{\mathrm{H}_{2} \mathrm{O}}$ ) for both base concentrations, of the Bunnett-Olsen (BO) term ( $H_{-}$ $-\mathrm{p} K_{\mathrm{w}}-\log \mathrm{COH}^{-}+\log a_{\mathrm{H}_{2} \mathrm{O}}$ ), and of the Marziano-Cim-eno-Passerini (MCP) term $-\log \left(f_{\mathrm{A}},-/ f_{\mathrm{HA}} \cdot f_{\mathrm{OH}^{-}}\right)$are listed at intervals of $2 \mathrm{~mol} \%$ DMSO in Table I.

Marziano-Cimino-Passerini Method. Ionization ratios for some of the diphenylamine and aniline indicators, ${ }^{28}$ those originally used in setting up the $H_{-}$function for aromatic amines, ${ }^{7}$ were used in plots according to eq 8 to give the indicator $\mathrm{p} K_{\mathrm{HA}}$ values. (The indicators used are labeled (H) in Table II.) With these numbers available, eq 9 was used to give $\log \left(f_{\mathrm{A}^{*}}-/ f_{\mathrm{HA},} f_{\mathrm{OH}^{-}}\right)$values for a reference indicator over the whole basicity range. Although there is no pressing need to choose one particular indicator as HA* over any other, ${ }^{29}$ it was found convenient to use the low $\mathrm{p} K_{\mathrm{HA}}$ acid $2,4,4^{\prime}$-trinitrodiphenylamine; the values listed in Table I are for this compound. The values for the other $H_{-}$ indicators are very close to those for this one in any case, as can be seen from the slopes in Table II. The Table I data and eq 10 were then used in all subsequent $\mathrm{p} K_{\mathrm{HA}}$ calculations using this method.

Calculations. Acidity constant calculations using eq 6 and 10 were carried out using all available ionization ratio data, ${ }^{8.28}$ by means of least-squares line fitting on a calculator. Slopes and intercept $\mathrm{p} K_{\mathrm{HA}}$ values for the two methods, for all available indicators, are given in Table II.

## Results

The two methods described above provide a different perspective for assessing the reliability of $\mathrm{p} K_{\mathrm{HA}}$ values previously determined using the standard Hammett technique. Those indicators which were used to set up the $H_{-}$(aromatic amine) scale would not be expected to give greatly altered values by the new methods since the degree of indicator parallelism during the original scale construction was quite high ${ }^{7 b . c}$ and since this scale and these indicators were used respectively in calculations using eq 6 and 8 . However, if the bases of the modified Bunnett-Olsen and Marziano-Cimeno-Passerini treatments are sound the discrepancies between the newly calculated $\mathrm{p} K_{\mathrm{HA}}$ values and the original ones can give some idea of the cumulative errors that a lengthy overlap operation produces.

For those feeble acids which are structurally unrelated to aromatic amines or whose ionization curves are not parallel to those of the scale indicators the new techniques provide a reasonable means of estimating the $\mathrm{p} K_{\mathrm{HA}}$ values in the standard state, water.

The correlation coefficients, slope, and intercept $\mathrm{p} K_{\mathrm{HA}}$ values, resulting from the application of eq 6 and 10 to all of the ionization ratio data currently available to us, ${ }^{7.8 .28}$ are given in Table II. Plots illustrating the application of the BO method are shown in Figure 1. The data were plotted as illustrated for convenience, in order to have both graph axes positive. Thus the slopes in Table II are listed either as Bunnett-type $\phi$ values (see eq 6) or as $m^{*}$ values (see eq 10) and are obtained by multiplying the Figure 1 slopes by minus one. Correlation coefficients for the BO plots are not listed; they have no meaning if the slope is very close to zero, ${ }^{30}$ and thus in many cases the correlation coef-


Figure 1. Graph illustrating the use of the BO eq 6 for some $H_{-}$indicators. $H_{-}-\log \left(C_{A^{-}} / C_{H_{A}}\right)$ is plotted vertically against $H_{-}-\mathrm{p} K_{w}-$ $\log \mathrm{COH}^{-}+\log a_{\mathrm{H}_{2} \mathrm{O}}: \mathrm{p} K_{\mathrm{HA}}$ values are $y$-axis intercepts. Compound numbering as in Table Il.
ficient obtained using this method does not indicate the goodness of fit obtained. On the other hand, the correlation coefficients obtained from the use of the other method are significant, and, as can be seen in Table II, they are uniformly excellent. They are listed there to three places of decimals unless the data justify listing more.

## Discussion

Comparison of the AF, BO, and MCP Methods. A good indication of whether or not a series of compounds forms an acidity function set can be obtained from an examination of the eq 10 slopes, $m^{*}$. In Table III are listed the average $m^{*}$ values for several series of compounds, together with the standard deviations for each series; also listed are the standard deviations for $\mathrm{p} K_{\mathrm{HA}}$ values measured in different ways. For instance, the values for compounds $\mathbf{1 - 3 4}$ measured by the BO method and by the AF method agree with one another to within $\pm 0.19$ unit.

We would suggest that a variation in $m^{*}$ of less than $\pm 0.1$ is required to give an acceptable acidity function set. The best set to use for the BO and MCP methods appears to be the aromatic amines used to develop the $H_{-}$scale, 1-34; the set 72-80 (substituted 9 -phenylfluorenes) also seems acceptable. Over the range $0-99.6 \mathrm{~mol} \%$ DMSO $\mathrm{p} K_{\mathrm{HA}}$ 's measured by the $\mathrm{AF}, \mathrm{BO}$, and MCP methods agree with one another to within about 0.5 unit, with most of the error at the high end of the range. Agreement would probably be better if accurate water activity data above $95 \mathrm{~mol} \%$ DMSO were available. Even so, considering that the acidity range covered extends over $12 \log$ units, between 12 and $\sim 24$, this can be regarded as good agreement.

Only compounds which obey the appropriate acidity scale, for instance the $H_{-}$set $\mathbf{1 - 3 4}$, give AF $\mathrm{p} K_{\mathrm{HA}}$ 's in good agreement with the BO and MCP values. Compounds $35-$ 51, which do not follow $H_{-}$closely, ${ }^{7 \mathrm{~b}}$ show considerable divergence between their $H_{-}$value at half-deprotonation, and the intercept BO and $\mathrm{MCP} \mathrm{p} K_{\mathrm{HA}}$ values. In all cases except the set $1-34$, the BO and $\mathrm{MCP} \mathrm{p} K_{\mathrm{HA}}$ values agree with one another much better than either value agrees with the AF $\mathrm{p} K_{\mathrm{HA}}$, as can be seen clearly from Table III.

Insofar as media containing 0.011 M base may not be directly comparable with those containing 0.0471 M base (see below on this point), conclusions regarding the carbon acids ${ }^{8}$ listed in Table II are somewhat more tentative. Nevertheless we may make some statements regarding the numbers obtained.

The phenyl-substituted 9-phenylfluorenes 72-80 appear to form a good acidity function set ( $m^{*}=1.434 \pm 0.093$ ), and the BO and $\mathrm{MCP} \mathrm{p} K_{\mathrm{HA}}$ values for these compounds correlate with one another within $\pm 0.43 \mathrm{p} K_{\mathrm{HA}}$ units: how-

Table II. Slopes, Correlation Coefficients, and Intercept $\mathrm{p} K_{\mathrm{HA}}$ Values for Some Weak Organic Acids, According to (6) and (10), from Ionization Ratio Measurements in DMSO-Water Mixtures Containing 0.011 or 0.0471 M TMAH

| No. ${ }^{\text {a }}$ | Indicator ${ }^{\text {b }}$ | No. of points | Acidityc function $\mathrm{p} K_{\mathrm{HA}}$ | Eq 6 |  | Eq 10 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Slope $\phi$ | Int $\mathrm{p} K_{\mathrm{HA}}$ | Corr coeff | Slope $m^{*}$ | Int $\mathrm{p} K_{\mathrm{HA}}$ |
| 1 | 2,4,4'-Tri- $\mathrm{NO}_{2}$-DPA (H) | 5 | 12.30 | 0.096 | 12.38 | 0.997 | 1.000 | 12.39 |
| 2 | 2,4,3'-Tri- $\mathrm{NO}_{2}$-DPA | 4 | 12.59 | 0.021 | 12.64 | 0.999 | 0.954 | 12.66 |
| 3 | $2,4-\mathrm{Di}-\mathrm{NO}_{2}-4^{\prime}-\mathrm{CF}_{3}-\mathrm{DPA}$ | 3 | 12.87 | -0.028 | 12.84 | 0.99999 | 0.970 | 12.90 |
| 4 | 2,4-Di-NO ${ }_{2}-3 \cdot-\mathrm{CF}_{3}-\mathrm{DPA}$ | 3 | 13.06 | -0.052 | 13.01 | 0.996 | 0.942 | 13.06 |
| 5 | 2,4-Di- $\mathrm{NO}_{2}-3$ - $-\mathrm{Cl}-\mathrm{DPA}$ | 3 | 13.17 | -0.029 | 13.13 | 0.99998 | 0.969 | 13.19 |
| 6 | 2,4-Di- $\mathrm{NO}_{2}-\mathrm{DPA}$ (H) | 4 | 13.85 | -0.023 | 13.81 | 0.9996 | 1.126 | 14.06 |
| 7 | 2,4-Di-NO ${ }_{2}-3$ - $\mathrm{Me}-\mathrm{DPA}$ | 3 | 13.90 | -0.029 | 13.85 | 0.9998 | 1.145 | 14.15 |
| 8 | 2,4-Di-NO ${ }^{2}-4$ - $\mathrm{NH}_{2}$-DPA | 3 | 14.48 | 0.003 | 14.48 | 0.996 | 1.179 | 14.77 |
| 9 | 4,3'- $\mathrm{Di}^{-\mathrm{NO}_{2}-\mathrm{DPA}}$ | 3 | 14.62 | -0.077 | 14.45 | 0.998 | 0.982 | 14.51 |
| 10 | 4- $\mathrm{NO}_{2}-3{ }^{\prime}-\mathrm{CF}_{3}-\mathrm{DPA}(\mathrm{H})$ | 4 | 14.90 | -0.021 | 14.85 | 0.998 | 1.039 | 14.91 |
| 11 | 4- $\mathrm{NO}_{2}-3 \mathrm{Cl}-\mathrm{Cl}-\mathrm{DPA}$ | 3 | 15.00 | 0.014 | 15.05 | 0.9998 | 1.073 | 15.10 |
| 12 | 4- $\mathrm{NO}_{2}$-DPA (H) | 4 | 15.67 | -0.037 | 15.54 | 0.999 | 1.010 | 15.57 |
| 13 | 4- $\mathrm{NO}_{2}-3$ - $\mathrm{Me}-\mathrm{DPA}$ | 3 | 15.60 | -0.028 | 15.49 | 0.999 | 1.027 | 15.53 |
| 14 | $4-\mathrm{NO}_{2}-4$ - $\mathrm{NH}_{2}$-DPA | 3 | 16.40 | 0.014 | 16.40 | 0.99996 | 1.046 | 16.38 |
| 15 | $4-\mathrm{Cl}-2-\mathrm{NO}_{2} \mathrm{AN}(\mathrm{H})$ | 7 | 17.08 | -0.068 | 16.76 | 0.99999 | 1.010 | 16.90 |
| 16 | 2- $\mathrm{NO}_{2}-\mathrm{DPA}(\mathrm{H})$ | 6 | 17.91 | 0.005 | 17.92 | 0.99999 | 1.148 | 18.32 |
| 17 | 4-CH3 $\mathrm{SO}_{2}$-DPA (H) | 6 | 18.80 | -0.004 | 18.77 | 0.99999 | 1.093 | 18.94 |
| 18 | 2,3,5,6-Tetra-Cl-AN | 5 | 19.22 | 0.044 | 19.47 | 0.999 | 1.150 | 19.68 |
| 19 | 3-NO ${ }_{2}$-DPA | 6 | 19.53 | -0.019 | 19.42 | 0.999 | 1.031 | 19.34 |
| 20 | 4,3'-Di-Cl-DPA (H) | 6 | 19.73 | 0.003 | 19.74 | 0.9998 | 1.055 | 19.67 |
| 21 | 3-CF33 ${ }^{\text {- }}$ (PA (H) | 7 | 20.48 | 0.001 | 20.49 | 0.9996 | 1.058 | 20.44 |
| 22 | 3-Cl-DPA | 4 | 20.73 | -0.015 | 20.63 | 0.999 | 1.086 | 20.88 |
| 23 | 4-Cl-DPA (H) | 6 | 21.33 | -0.001 | 21.31 | 0.9995 | 1.110 | 21.61 |
| 24 | 3-CH30-DPA | 3 | 22.22 | -0.070 | 21.67 | 0.9999 | 1.129 | 22.65 |
| 25 | DPA (H) | 5 | 22.44 | -0.001 | 22.44 | 0.99995 | 1.200 | 23.39 |
| 26 | 4-CN-AN (H) | 5 | 22.68 | 0.0003 | 22.69 | 0.99998 | 1.202 | 23.64 |
| 27 | 3,4,5-Tri-Cl-AN | 5 | 22.86 | 0.032 | 23.13 | 0.9996 | 1.240 | 24.11 |
| 28 | $4-\mathrm{CH}_{3}$-DPA | 7 | 22.95 | -0.025 | 22.74 | 0.9995 | 1.180 | 23.73 |
| 29 | 4-CH30-DPA | 7 | 23.22 | -0.080 | 22.54 | 0.9996 | 1.108 | 23.44 |
| 30 | 3,5-Di-Cl-AN (H) | 7 | 23.59 | 0.008 | 23.67 | 0.9996 | 1.140 | 24.05 |
| 31 | 3,4-Di-Cl-AN | 5 | 24.60 | -0.001 | 24.58 | 0.994 | 1.143 | 25.07 |
| 32 | 3-CN-AN (H) | 5 | 24.64 | -0.034 | 24.31 | 0.998 | 1.107 | 24.80 |
| 33 | 3-CF3 $-\mathrm{AN}(\mathrm{H})$ | 4 | 25.40 | 0.0001 | 25.40 | 0.99998 | 1.233 | 26.70 |
| 34 | 3-Cl-AN (H) | 3 | 25.63 | -0.012 | 25.50 | 0.9999 | 1.216 | 26.77 |
| 35 | 4- $\mathrm{NO}_{z}-2,6-\mathrm{di}-t$-Bu-AN | 3 | 17.40 | -0.080 | 17.00 | 0.9999 | 0.943 | 16.93 |
| 36 | 4- $\mathrm{NO}_{2}$-N-trityl-AN | 5 | 17.98 | -0.084 | 17.56 | 0.9998 | 1.039 | 17.90 |
| 37 | $4-\mathrm{NO}_{2}-\mathrm{N}-\mathrm{CH}_{3}-\mathrm{AN}$ | 5 | 18.49 | -0.109 | 17.90 | 0.999 | 1.014 | 18.24 |
| 38 | $4-\mathrm{NO}_{2}-\mathrm{N}, 2-\mathrm{di}-\mathrm{CH}_{3}-\mathrm{AN}$ | 4 | 18.58 | -0.061 | 18.24 | 0.9999 | 1.049 | 18.51 |
| 39 | $4-\mathrm{NO}_{2}-\mathrm{N}-\mathrm{Et}-\mathrm{AN}$ | 4 | 18.58 | -0.099 | 18.04 | 0.9999 | 1.007 | 18.30 |
| 40 | $4-\mathrm{NO}_{2}-\mathrm{N}-i-\mathrm{Pr}-\mathrm{AN}$ | 5 | 18.66 | -0.100 | 18.11 | 0.9999 | 1.003 | 18.35 |
| 41 | 4- $\mathrm{NO}_{2}-2,6-\mathrm{di}-\mathrm{CH}_{3}-\mathrm{AN}$ | 4 | 18.71 | -0.155 | 17.89 | 0.9999 | 0.933 | 18.07 |
| 42 | 4- $\mathrm{NO}_{2}-2-\mathrm{CH}_{3}-\mathrm{AN}$ | 4 | 18.83 | -0.135 | 18.10 | 0.9997 | 0.955 | 18.29 |
| 43 | 4- $\mathrm{NO}_{2}-\mathrm{AN}$ | 4 | 18.91 | --0.143 | 18.11 | 0.99997 | 0.958 | 18.35 |
| 44 | $4-\mathrm{NO}_{2}-\mathrm{N}-t-\mathrm{Bu}-\mathrm{AN}$ | 4. | 19.64 | -0.021 | 19.52 | 0.9997 | 1.064 | 19.63 |
| 45 | 2,2'-Dipyridylamine | 8 | 19.91 | -0.213 | 18.56 | 0.9995 | 0.834 | 18.53 |
| 46 | 4- $\mathrm{NO}_{2}-3,5-\mathrm{di}-\mathrm{CH}_{3}-\mathrm{AN}$ | 6 | 21.16 | 0.103 | 21.90 | 0.998 | 1.225 | 22.23 |
| 47 | 2,6-Di-Cl-AN | 4 | 22.40 | 0.026 | 22.61 | 0.999 | 1.239 | 23.64 |
| 48 | 4-NO2-2, $3,5,6$-tetra-Me-AN | 5 | 22.66 | 0.259 | 24.84 | 0.9996 | 1.514 | 26.05 |
| 49 | 2,5-Di-Cl-AN | 7 | 22.71 | 0.017 | 22.84 | 0.998 | 1.207 | 23.71 |
| 50 | 2,3-Di-Cl-AN | 4 | 23.14 | -0.126 | 22.03 | 0.992 | 0.960 | 22.13 |
| 51 | 2,4-Di-Cl-AN | 5 | 23.46 | -0.094 | 22.64 | 0.995 | 0.995 | 22.74 |
| 52 | $2-\mathrm{NO}_{2}-\mathrm{FL}$ | 3 | 17.96 | -0.086 | 17.17 | 0.993 | 1.015 | 17.41 |
| 53 | 9-Biphenyl-4-yl-FL | 4 | 18.21 | 0.354 | 19.26 | 0.996 | 1.438 | 19.36 |
| 54 | 2-CN-FL | 4 | 18.96 | 0.393 | 20.36 | 0.999 | 1.605 | 20.98 |
| 55 | 7H-Benzo [c]-FL | 4 | 19.62 | 0.093 | 19.56 | 0.996 | 1.225 | 19.88 |
| 56 | $2-\mathrm{Br}-\mathrm{FL}$ | 4 | 20.56 | 0.044 | 20.21 | 0.9997 | 1.080 | 20.07 |
| 57 | 2-Cl-FL | 4 | 20.59 | -0.175 | 18.97 | 0.9996 | 0.889 | 19.03 |
| 58 | 9-Benzyl-FL | 5 | 21.20 | -0.019 | 20.55 | 0.993 | 1.039 1.214 | 20.51 |
| 59 | 9-Me-FL | 6 | 21.80 | 0.137 | 22.17 | 0.995 | 1.214 | 22.20 |
| 60 | 4H-Cyclopenta[def]phenanthrene | 4 | 21.79 | -0.064 | 20.80 | 0.974 | 1.009 | 20.88 |
| 61 | FL | 6 | 22.10 | 0.092 | 22.15 | 0.997 | 1.194 | 22.35 |
| 62 | 9-Et-FL | 5 | 22.22 | 0.051 | 21.99 | 0.988 | 1.168 | 22.31 |
| 63 | 2-OMe-FL | 4 | 22.36 | -0.132 | 20.78 | 0.998 | 0.971 | 21.09 |
| 64 | $9-i-\mathrm{Pr}-\mathrm{FL}$ | 5 | 22.70 | 0.164 | 23.25 | 0.951 | 1.304 | 23.68 |
| 65 | $9-t-\mathrm{Bu}-\mathrm{FL}$ | 4 | 23.41 | 0.107 | 23.58 | 0.998 | 1.339 | 24.71 |
| 66 | Phenalene | 2 | 19.45 | 0.080 | 19.30 | (1) | 1.215 | 19.64 |
| 67 | $4-\mathrm{Cl}-2-\mathrm{NO}_{2}-\mathrm{AN}$ | 3 | $(17.08){ }^{d}$ | -0.097 | 16.62 | 0.997 | 0.936 | 16.60 18.32 |
| 68 | $4-\mathrm{NO}_{2}-\mathrm{AN}$ | 4 | $(18.91)^{e}$ | -0.159 -0.179 | 17.97 17.54 | 0.999 0.999 | 0.964 0.953 | 18.32 17.94 |
| 69 | 2- $\mathrm{NO}_{2}$ - AN 4-CN-9-Ph-FL | 5 | $\stackrel{f}{15.40}$ | -0.179 0.879 | 17.54 18.27 | 0.999 0.991 | 0.953 2.024 | 17.94 18.47 |
| 71 | 9-Ph-3,4-benzo-FL | 4 | 16.60 | 0.344 | 17.75 | 0.997 | 1.404 | 17.76 |
| 72 | 9-(m-Cl-Ph)-FL | 4 | 17.66 | 0.427 | 19.12 | 0.993 | 1.515 | 19.22 |
| 73 | 9-( $\mathrm{m}-\mathrm{CF}_{3}-\mathrm{Ph}$ )-FL | 3 | 17.69 | 0.213 | 18.32 | 0.994 | 1.259 | 18.30 |
| 74 | 9-(p-Cl-Ph)-FL | 6 | 18.10 | 0.263 | 18.91 | 0.992 | 1.368 | 19.10 |

Table II (Continued)

| No. ${ }^{a}$ | Indicator ${ }^{\text {b }}$ | No. of points | $\begin{gathered} \text { Acidity } c \\ \text { function } \mathrm{p} K_{\mathrm{HA}} \\ \hline \end{gathered}$ | Eq 6 |  | Eq 10 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Slope $\phi$ | Int $\mathrm{p} K_{\mathrm{HA}}$ | Corr coeff | Slope $m^{*}$ | Int $\mathrm{p} K_{\text {HA }}$ |
| 75 | 9-(m-OMe-Ph)-FL | 4 | 18.47 | 0.289 | 19.35 | 0.992 | 1.456 | 19.80 |
| 76 | 9-( $n$ - $\mathrm{Me}-\mathrm{Ph}$ )- Fl | 4 | 18.96 | 0.293 | 19.90 | 0.993 | 1.475 | 20.40 |
| 77 | $9-\mathrm{Ph}-\mathrm{FL}$ | 12 | 18.59 | 0.333 | 19.67 | 0.995 | 1.529 | 20.24 |
| 78 | 9-( $m$ - $\mathrm{Me}-\mathrm{Ph}$ )-FL | 4 | 18.84 | 0.215 | 19.38 | 0.998 | 1.405 | 19.96 |
| 79 | $9-(p-\mathrm{OMe}-\mathrm{Ph})$-FL | 3 | 19.01 | 0.344 | 20.19 | 0.9998 | 1.558 | 20.83 |
| 80 | 9 -( $p$ - $\mathrm{NMe}_{2}$-Ph)-FL | 5 | 19.61 | 0.194 | 20.02 | 0.994 | 1.341 | 20.38 |

$a$ Numbers $1-14$, ref $7 \mathrm{a}, 28 \mathrm{~b} ; 15-51$, ref $7 \mathrm{~b}, 28 \mathrm{a} ; 52-69$ and 77 , ref $8 \mathrm{~b} ; 70-80$, ref $8 \mathrm{a}, b \mathrm{DPA}=$ diphenylamine; AN = aniline; FL $=$ fluorene. $(\mathrm{H})=$ indicator used for MCP method. $c$ Numbers $1-34, H_{-} ;{ }^{7} 35-51, H_{-}$at half-deprotonation; ${ }^{75} 52-66$ and $70-80, H_{-} ;{ }^{8} 67$ and 68 , $H_{-}$, see no. 15 and 43. $d$ Value obtained using $H_{-}$, given in ref 8 b . ${ }^{e} H_{-}$at half-deprotonation. $f$ Not listed.

Table III. Average $m^{*}$ Values and Standard Deviation between $\mathrm{p} K_{H A}$ 's Measured in Different Ways, for the Compounds in Table II

| No. and type of indicator ${ }^{a}$ | Acidity <br> function | Av $m^{*}$ value | $\mathrm{BO} / \mathrm{AF}^{b}$ | $\mathrm{MCP} / \mathrm{AF} b$ | $\mathrm{BO} / \mathrm{MCP} b$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1-34$, aromatic amines | $H_{-}$ | $1.091 \pm 0.083$ | $\pm 0.19$ | $\pm 0.50$ |  |
| $35-51$, aromatic amines $c$ | $H_{-}$ | $1.055 \pm 0.156$ | $\pm 0.85$ | $\pm 1.09$ | $\pm 0.55$ |
| $52-65,70,71$, aromatic hydrocarbons | $H_{-} c$ | $1.245 \pm 0.274$ | $\pm 1.13$ | $\pm 1.25$ | $\pm 0.48$ |
| $72-80,9$-phenylfluorenes | $H_{-} c$ | $1.434 \pm 0.093$ | $\pm 0.93$ | $\pm 1.31$ |  |

$a$ From Table II. ${ }^{b}$ AF $=$ acidity function method. $\mathrm{BO}=$ Bunnett-Olsen method, eq $6 . \mathrm{MCP}=$ Marziano-Cimino-Passerini method, eq 10 . Standard deviation between $\mathrm{p} K_{\mathrm{HA}}$ values measured in the two ways shown in the column heading. $c \mathrm{AF} \mathrm{p} K$ taken as $H_{-}$at half-deprotonation.


Figure 2. BO plots for 15 using six different acidity functions, illustrating convergence on a common $\mathrm{p} K_{\mathrm{HA}}$ value.
ever, the AF values are about one $\mathrm{p} K$ unit lower. This is the case for all the carbon acids 52-66 and 70-80 in Table II. It is possible that anchoring difficulties encountered in setting up the $H_{-}{ }^{\text {c }}$ scale account for these discrepancies. ${ }^{8,31,32}$

It is rather difficult to estimate errors in $\mathrm{p} K_{\mathrm{HA}}$ values, whether obtained by the MCP or BO methods, or by the AF method. In some cases the extrapolations are very long; obviously the better the ionization ratio data the better the intercept $\mathrm{p} K_{\mathrm{HA}}$ value. We estimate that for reasonably good data the error in all three methods should be approximately: $0-25 \mathrm{~mol} \%$ DMSO, $\pm 0.05$ units; $25-50 \%, \pm 0.1$ unit: $50-80 \%$, $\pm 0.2$ unit; $80-95 \%$, $\pm 0.5$ unit; $95-100 \%$, $\pm 1-2$ units. ${ }^{33}$

Use of the H_ Scale in the BO Method. Although we have used the $\mathrm{H}_{-}$scale in developing the Bunnett-Olsen eq 6, primarily because we feel that $H_{-}$is the most accurately known acidity function in DMSO and because it encompasses almost the whole $0-100 \mathrm{~mol}$ \% DMSO range, we could reasonably have used any other acidity function. We have checked this in a number of cases; a typical example, compound 15, is shown in Figure 2. It is apparent that all of the extrapolations converge on more or less the same point; in this case the average extrapolated $\mathrm{p} K_{\mathrm{HA}}$ is $17.04 \pm 0.31$. Considering that the AF values for the solution in which this compound is half-ionized differ by as much as 4.2 units


Figure 3. Excess basicities ( $H-\mathrm{p} K_{w}-\log C_{\mathrm{OH}^{-}}+\log a_{\mathrm{H}_{2} \mathrm{O}}$ ) for different acidity functions in DMSO-water mixtures as a function of medium composition.
this can be considered good agreement. Thus one can justify using the $\mathrm{H}_{-}$scale in the BO approach, even for compounds that do not follow it.

Excess Basicity. The excess basicity of a medium, $H$ $\mathrm{p} K_{\mathrm{w}}-\log \mathrm{C}_{\mathrm{OH}^{-}}+\log a_{\mathrm{H}_{2} \mathrm{O}}$, represents the increase in basicity relative to the standard state that is due to the various species' activity coefficients deviating from unity, and can be used to compare acidity functions set up using different concentrations of base. ${ }^{34}$ Figure 3 shows a plot of excess basicity against solvent composition for the six acidity functions used herein. Apart from the clearly anomalous behavior of the $H_{-}{ }^{\text {c }}$ scale at the lower end and the possibly anomalous behavior of the $H_{G C}{ }^{0.011}$ scale at the upper end, the various acidity functions tend to be affected in the same way as the solvent composition changes. Indeed, one can show that the acidity functions are linear in one another
over a considerable range, and this applies also to the excess basicities.

It is apparent from Figure 3 that the excess basicities derived from the $H_{\mathrm{GC}}{ }^{0.011}$ and $H_{\mathrm{GC}}{ }^{0.0471}$ scales are not the same. We may conclude from this that water-DMSO mixtures containing 0.011 or 0.0471 M base are sufficiently different media to produce significantly different medium activity coefficients for species dissolved in them. Apart from the already-mentioned anomalies, the important features of Figure 3 appear to be a change in slope at 25-35 $\mathrm{mol} \%$ DMSO, which is not unreasonable as many physical properties of water-DMSO mixtures change at about this value, ${ }^{22.26}$ and a sharp upward turn at $\sim 85 \mathrm{~mol} \%$ DMSO, which probably means that $f \mathrm{OH}^{-}$starts to increase rapidly at about this point.

## Conclusions

1. Equations have been derived that allow the BunnettOlsen and Marziano-Cimino-Passerini methods to be applied to ionization of feeble acids in basic aqueous DMSO.
2. Using these methods, estimates have been made of the $\mathrm{p} K_{\mathrm{HA}}$ values of 80 nitrogen and carbon acids. The values obtained are as reliable as those obtained by the acidity function method, for compounds that follow the appropriate function closely. For other compounds the extrapolative $\mathrm{p} K_{\mathrm{HA}}$ appears to be better, insofar as the extrapolation goes directly back to the standard state, water. Use of these extrapolative techniques obviates the necessity for setting up new acidity functions.
3. The MCP technique does not use an acidity function directly and correlations obtained using it are slightly better, since the BO approach tends to magnify errors by accumulating those present in the ionization data and those in the acidity function used.
4. The MCP technique shows great promise in the analysis of kinetic data, since the activity coefficient ratio for the individual compound whose kinetics are being studied can be readily calculated. A simple extension should permit estimates of quantities such as $\log f_{\mathrm{A}}-/ f_{\mathrm{t}}$, and the amount of charge present at the transition state.

Acknowledgment. The financial support of the National Research Council of Canada is gratefully acknowledged. We thank, also, Dr. M. J. Cook and Professor A. R. Katritzky for supplying us with unpublished data.

## References and Notes

(1) L. P. Hammett and A. J. Deyrup, J. Am. Chem. Soc., 54, 2721 (1932); L. P. Hammett, "Physical Organic Chemistry", 2nd ed, McGraw-Hill, New York, N.Y., 1970, Chapter 9.
(2) M. A. Paul and F. A. Long, Chem. Rev., 57, 1 (1957); C. H. Rochester, "Acidity Functions", Academic Press, New York, N.Y., 1970; M. Ller, "Reaction Mechanisms in Sulfuric Acld", Academic Press, New York, N.Y., 1971.
(3) (a) E. M. Arnett, Prog. Phys. Org. Chem., 1, 223 (1963); (b) K. Yates and R. A. McClelland, ibid., 11, 323 (1974).
(4) E. M. Arnett and G. W. Mach. J. Am. Chem. Soc., 88, 1177 (1966).
(5) T. J. Gilbert and C. D. Johnson, J. Am. Chem. Soc., 96, 5846 (1974).
(6) Such estimates are of particular value in studies of catalysis. See, for example, W. P. Jencks, "Catalysis in Chemistry and Enzymology", McGraw-Hill, New York, N.Y. 1969, p 191.
(7) (a) A. Albagli, A. Buckley, A. M. Last, and R. Stewart, J. Am. Chem. Soc., 95, 4711 (1973); (b) D. Dolman and R. Stewart, Can. J. Chem., 45, 911 (1967); (c) R. Stewart and J. P. O'Donnell, ibid., 42, 1681
(1964); (d) R. Stewart and J. P. O'Donnell, J. Am. Chem. Soc.. 84, 493 (1962): (e) C. H. Langford and R. L. Burwell, ibid., 82, 1503 (1960).
(8) (a) A. F. Cockerill and J. E. Lamper, J. Chem. Soc. B, 503 (1971); (b) K. Bowden and A. F. Cockerill, ibid., 173 (1970).
(9) M. J. Cook, A. R. Katritzky, P. Linda, and R. D. Tack, J. Chem. Soc., Perkin Trans. 21080 (1973); M. J. Cook, personal communication.
(10) K. Bowden, A. Buckley, and R. Stewart, J. Am. Chem. Soc., 88, 947 (1966).
(11) J. Janata and R. D. Holtby-Brown, J. Chem. Soc., Perkin Trans. 2, 991 (1973); J. Janata and J. Taylor, ibid., 356 (1974).
(12) The smaller degree of charge delocalization in the anion of a very weakly acidic amine such as diphenylamine, compared to that in a stronger acid such as its trinitro derivative, suggests that the activity coefficients of these amines will differ. Without taking into account the changes that occur in the actlvity coefflcients of the neutral compounds it is difficult to estlmate the extent to which a systematic cumulative error creeps into the stepwise $p K$ determinations because of this effect. The empirical observation of parallel ionization plots for overlapping indicators is the best assurance that gross errors are not made in assigning $p K$ values by the acidity function technique.
(13) M. M. Kreevoy and E. H. Baughman, J. Am. Chem. Soc., 95, 8178 (1973).
(14) Kreevoy and Baughman also question whether the acidity function based on aromatic amines ${ }^{7}$ "can be safely used for acids of $p K_{H A}$ widely variant from those of the indicators used to set up the function'. ${ }^{13}$ Except for attempts to correlate rate data with solution basicity (or acidity) it is hard to conceive of a scale being used for acids (or bases) whose $\mathrm{p} K$ vaiues lie outside the range of indicators used in its construction. The statement is, of course, unexceptionable if the word "structure" replaces ' $\mathrm{p} K_{\mathrm{HA}}$ "
(15) J.-C. Halle, F. Terrier, and R. Schaal, Bull. Soc. Chim. Fr., 1225, 1231 (1973): J.-C. Hallé, ibid., 1553 (1973).
(16) Applying the word 'indicator"' to the compounds whose ionization is being examined unfortunately focuses attention on the properties of the solution rather than on the compounds themselves.
(17) (a) C. D. Ritchie and R. E. Uschold, J. Am. Chem. Soc., 89, 1721 and 2752 (1967); ibid., 90,2821 (1968); (b) F. G. Bordwell, R. H. Imes, and E. C. Steiner, 89, 3905 (1967); F. G. Bordwell and W. S. Matthews, ibid., 96, 1214, 1216 (1974); F. G. Bordwell, W. S. Matthews, and N. R. Vanier, ibid., 97, 442 (1975); F. G. Bordwell, private communicatlon; (c) J Courtot-Coupez and M. L. Demezet, Bull. Soc. Chim. Fr., 1851 (1969).
(18) (a) E. C. Steiner and J. D. Starkey, J. Am. Chem. Soc., 89, 2751 (1967); (b) E. C. Steiner and J. M. Gilbert, ibid., 87, 382 (1965).
(19) J. F. Bunnett and F. P. Olsen, Can. J. Chem., 44, 1899 (1966).
(20) J. W. Barnett and C. J. O'Connor, Aust. J. Chem., 26, 2083 (1973); G. Scorrano, Acc. Chem. Res., 6, 132 (1973).
(21) N. C. Marziano, G. M. Cimino, and R. C. Passerini, J. Chem. Soc., Perkin Trans. 2, 1915 (1973).
(22) S. T. Lam and R. L. Benoit, Can. J. Chem., 52, 718 (1974).
(23) The anchor compound $H A_{0}$ can be simply one whose ionization can be measured in water or it can be derived by extrapolation to pure water of the term $\log C_{\mathrm{A}} / C_{\mathrm{HA}}-\mathrm{p} K_{\mathrm{w}}-\log C_{\mathrm{OH}^{-}}+\log a_{\mathrm{H}_{2}} \mathrm{O}$, using lonization ratios measured as a functlon of medlum composition. In pure water the activity coefficient ratio term $\ln \Theta q 7$ is zero, by definition, and $p K_{H A_{0}}$ is immediately obtained as the intercept. With nitrogen acids the extrapolations are linear in mol \% DMSO, at least up to $15 \%$; in acid solutions they are linear in $\mathrm{C}_{\mathrm{H}^{+}}$.
(24) B. G. Cox and P. T. McTigue, Aust. J. Chem., 20, 1815 (1967).
(25) J. Kenttamaa and J. J. Lindberg, Suom. Kemistil. B, 33, 3, 98 (1960).
(26) J. M. G. Cowie and P. M. Toporowski, Can. J. Chem., 89, 2240 (1961).
(27) R. G. Bates, "Determination of pH, Theory and Practice", 2nd ed, Wlley, New York, N.Y., 1973, p 448.
(28) (a) D. Dolman, Ph.D. Thesis, U.B.C., 1966; (b) A. Albagli, Ph.D. Thesis, U.B.C., 1969.
(29) Of necessity, activity coefficient ratios for any one compound calculated in this way will be a linear function of those calculated for any other.
(30) J. F. Bunnett, R. L. McDonald, and F. P. Olsen, J. Am. Chem. Soc., 96, 2855 (1974).
(31) Values reported for the $\mathrm{p} K_{H A}$ of 9-phenylfluorene include 18.59 (DMSOethanol) ${ }^{32} 18.49$ (sulfolane-water), ${ }^{78} 18.38$ (DMSO-water), ${ }^{32}$ and 18.1 (DMSO), ${ }^{19 \mathrm{a}}$ all referred to the aqueous standard state, and 16.4 (DMSO), ${ }^{17}$ standard state DMSO.
(32) K. Bowden and R. Stewart, Tetrahedron, 21, 261 (1965).
(33) These error limits are generally less than the discrepancies between the AF values and the relative pK values determined by Hallé and Schaal et al. in DMSO-water mixtures. ${ }^{15} \mathrm{If}$, as the DMSO content is increased, there is a significant and growing error in the AF values one might expect to observe both unsatisfactory overlap and deviations from the values determined by the BO and MCP methods, particularly the latter. It is always possible, of course, that activity function anomalies occur at low degrees of ionization, i.e., outside the measurable log / range. Such effects appear to be unlikely but cannot be ruled out as a cause of the discrepancies noted above.
(34) See C. Perrin, J. Am. Chem. Soc., 86, 256 (1964), for the use of an analogous term in acld systems.

